24 research outputs found

    Die interstitielle EntzĂŒndung im Rahmen des Alport Syndroms

    Get PDF

    Case report: Filarial infection of a parti-coloured bat: Litomosa sp. adult worms in abdominal cavity and microfilariae in bat semen

    Get PDF
    BackgroundFilarial infections have been understudied in bats. Likewise, little is known about pathogens associated with the reproductive system in chiropterans. While semen quality is critical for reproductive success, semen-borne pathogens may contribute to reproductive failure.MethodsFor the first time we performed electroejaculation and used computer-assisted semen analysis to provide baseline data on semen quality in a parti-coloured bat (Vespertilio murinus).ResultsThe semen quality values measured in the V. murinus male appeared high (semen concentration = 305.4 × 106/mL; progressive and motile sperm = 46.58 and 60.27%, respectively). As an incidental finding, however, microfilariae were observed in the bat semen examined. At necropsy, eight adult filarial worms, later genetically identified as Litomosa sp., were found in the peritoneal cavity, close to the stomach, of the same particoloured bat male dying as a result of dysmicrobia and haemorrhagic gastroenteritis in a wildlife rescue centre. Histopathology revealed microfilariae in the testicular connective tissue and the epidydimal connective and fat tissues. A PCR assay targeting cytochrome c oxidase subunit 1 confirmed that adult worms from the peritoneal cavity and testicular microfilariae were of the same filarial species. Mildly engorged argasid mite larvae attached to the bat skin proved negative for filarial DNA and the adult filarial worms proved negative for endosymbiont Wolbachia.ConclusionWhile the standard filarial life cycle pattern involves a vertebrate definitive host and an invertebrate vector, represented by a blood-sucking ectoparasite, our finding suggests that microfilariae of this nematode species may also be semen-borne, with transmission intensity promoted by the polygynous mating system of vespertilionid bats in which an infected male mates with many females during the autumn swarming. Presence of microfilariae may be expected to decrease semen quality and transmission via this route may challenge the success of reproductive events in females after mating. Further investigation will be necessary to better understand the bat-parasite interaction and the life cycle of this filarial worm

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    VHDL-based implementation of CRYSTALS-Kyber components on FPGA

    No full text
    CRYSTALS-Kyber is one of the finalists of the National Institute of Standards and Technology (NIST) post-quantum cryptography competition. In this paper, we deal with effective hardware-accelerated implementations of components intended for the use in the FPGA (Field Programmable Gate Array) implementation of the above-mentioned lattice-based cryptography scheme. The discussed components are NTT (Number Theoretic Transform), inverse NTT (NTT−1), CBD (Centered Binomial Distribution) and the Parse Algorithm (shortly Parse). The improved implementation of NTT (NTT−1) requires 1189 (1568) Look-Up Tables (LUTs), 1469 (2161) Flip-Flops (FFs), 28 (50) Digital Signal Processing blocks (DSPs) and 1.5 (1.5) Block Memories (BRAMs). The latency of the design is 322 (334) clock cycles at the frequency 637 MHz which makes the presented NTT (NTT−1) implementations to be currently the fastest ones. The implementations of the sampling functions (CBD and Parse) requires less than 100 LUTs and FFs with maximum latency 5 clock cycles at the frequencies over 700 Mhz. All implementations has been synthesized for the Xilinx Virtex UltraScale+ architecture

    Online Occupational Therapy Program Assessment: Application of the Sloan Consortium

    Get PDF
    Purpose: In order to assess outcomes of an online Transitional Masters of Occupational Therapy (TMOT) degree program, the Sloan Consortium’s Five Pillars Model of Quality was applied to: 1) student assessment of learning and programmatic satisfaction; and 2) faculty satisfaction with the online teaching context. Method: Two surveys were used for post-programmatic data collection; one survey was specifically developed to measure TMOT graduates’ learning and satisfaction with programmatic parameters. The Online Faculty Satisfaction Survey (OFSS) was used to measure teaching faculty’s perspectives. Results: Graduates\u27 responses indicated a moderate to strong support for learning effectiveness, satisfaction with online learning, institutional commitment, and cost-effectiveness. Faculty noted concerns with the time-intensity of online teaching, yet were satisfied with teaching self-efficacy, student participation, and learning outcomes.Conclusion: While this survey research suggests the online learning environment is a viable method to accomplish outcomes in occupational therapy education, the study findings also illustrate the structural and integrative value of the Sloan Consortium’s Five Pillars Model for program assessment across allied health disciplines. The Five Pillars Model’s value encompasses both the student perspective and faculty satisfaction, as well as other aspects of the online context for higher education
    corecore